130 research outputs found

    Maximizing the Total Resolution of Graphs

    Full text link
    A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident to a common node (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we evaluate both by introducing the notion of "total resolution", that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a drawing is studied. The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution

    Multidimensional Data Visual Exploration by Interactive Information Segments

    Get PDF
    Visualization techniques provide an outstanding role in KDD process for data analysis and mining. However, one image does not always convey successfully the inherent information from high dimensionality, very large databases. In this paper we introduce VSIS (Visual Set of Information Segments), an interactive tool to visually explore multidimensional, very large, numerical data. Within the supervised learning, our proposal approaches the problem of classification by searching of meaningful intervals belonging to the most relevant attributes. These intervals are displayed as multi–colored bars in which the degree of impurity with respect to the class membership can be easily perceived. Such bars can be re–explored interactively with new values of user–defined parameters. A case study of applying VSIS to some UCI repository data sets shows the usefulness of our tool in supporting the exploration of multidimensional and very large data

    Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems

    Get PDF
    Loss of biodiversity from lower to upper trophic levels reduces overall productivity and stability of coastal ecosystems in our oceans, but rarely are these changes documented across both time and space. The characterisation of environmental DNA (eDNA) from sediment and seawater using metabarcoding offers a powerful molecular lens to observe marine biota and provides a series of ‘snapshots’ across a broad spectrum of eukaryotic organisms. Using these next-generation tools and downstream analytical innovations including machine learning sequence assignment algorithms and co-occurrence network analyses, we examined how anthropogenic pressures may have impacted marine biodiversity on subtropical coral reefs in Okinawa, Japan. Based on 18 S ribosomal RNA, but not ITS2 sequence data due to inconsistent amplification for this marker, as well as proxies for anthropogenic disturbance, we show that eukaryotic richness at the family level significantly increases with medium and high levels of disturbance. This change in richness coincides with compositional changes, a decrease in connectedness among taxa, an increase in fragmentation of taxon co-occurrence networks, and a shift in indicator taxa. Taken together, these findings demonstrate the ability of eDNA to act as a barometer of disturbance and provide an exemplar of how biotic networks and coral reefs may be impacted by anthropogenic activities

    The triconnected abstraction of process models

    Get PDF
    Companies use business process models to represent their working procedures in order to deploy services to markets, to analyze them, and to improve upon them. Competitive markets necessitate complex procedures, which lead to large process specifications with sophisticated structures. Real world process models can often incorporate hundreds of modeling constructs. While a large degree of detail complicates the comprehension of the processes, it is essential to many analysis tasks. This paper presents a technique to abstract, i.e., to simplify process models. Given a detailed model, we introduce abstraction rules which generalize process fragments in order to bring the model to a higher abstraction level. The approach is suited for the abstraction of large process specifications in order to aid model comprehension as well as decomposing problems of process model analysis. The work is based on process structure trees that have recently been introduced to the field of business process management

    Measurements of long-range near-side angular correlations in sNN=5\sqrt{s_{\text{NN}}}=5TeV proton-lead collisions in the forward region

    Get PDF
    Two-particle angular correlations are studied in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of sNN=5\sqrt{s_{\text{NN}}}=5TeV, collected with the LHCb detector at the LHC. The analysis is based on data recorded in two beam configurations, in which either the direction of the proton or that of the lead ion is analysed. The correlations are measured in the laboratory system as a function of relative pseudorapidity, Δη\Delta\eta, and relative azimuthal angle, Δϕ\Delta\phi, for events in different classes of event activity and for different bins of particle transverse momentum. In high-activity events a long-range correlation on the near side, Δϕ≈0\Delta\phi \approx 0, is observed in the pseudorapidity range 2.0<η<4.92.0<\eta<4.9. This measurement of long-range correlations on the near side in proton-lead collisions extends previous observations into the forward region up to η=4.9\eta=4.9. The correlation increases with growing event activity and is found to be more pronounced in the direction of the lead beam. However, the correlation in the direction of the lead and proton beams are found to be compatible when comparing events with similar absolute activity in the direction analysed.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+→J/ψ K+B^+ \to J/\psi \, K^+ and B0→J/ψ K∗0B^0 \to J/\psi \, K^{*0} using 3.0 fb−13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7 TeV7\mathrm{\,TeV} and 8 TeV8\mathrm{\,TeV}. Its tagging power on these samples of B→J/ψ XB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm

    Study of the production of Λb0\Lambda_b^0 and B‟0\overline{B}^0 hadrons in pppp collisions and first measurement of the Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- branching fraction

    Get PDF
    The product of the Λb0\Lambda_b^0 (B‟0\overline{B}^0) differential production cross-section and the branching fraction of the decay Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- (B‟0→J/ψK‟∗(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0) is measured as a function of the beauty hadron transverse momentum, pTp_{\rm T}, and rapidity, yy. The kinematic region of the measurements is pT<20 GeV/cp_{\rm T}<20~{\rm GeV}/c and 2.0<y<4.52.0<y<4.5. The measurements use a data sample corresponding to an integrated luminosity of 3 fb−13~{\rm fb}^{-1} collected by the LHCb detector in pppp collisions at centre-of-mass energies s=7 TeV\sqrt{s}=7~{\rm TeV} in 2011 and s=8 TeV\sqrt{s}=8~{\rm TeV} in 2012. Based on previous LHCb results of the fragmentation fraction ratio, fΛB0/fdf_{\Lambda_B^0}/f_d, the branching fraction of the decay Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- is measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4}, \end{equation*} where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay B‟0→J/ψK‟∗(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0, and the fourth is due to the knowledge of fΛb0/fdf_{\Lambda_b^0}/f_d. The sum of the asymmetries in the production and decay between Λb0\Lambda_b^0 and Λ‟b0\overline{\Lambda}_b^0 is also measured as a function of pTp_{\rm T} and yy. The previously published branching fraction of Λb0→J/ψpπ−\Lambda_b^0\rightarrow J/\psi p\pi^-, relative to that of Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^-, is updated. The branching fractions of Λb0→Pc+(→J/ψp)K−\Lambda_b^0\rightarrow P_c^+(\rightarrow J/\psi p)K^- are determined.Comment: 29 pages, 19figures. All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm

    Evidence for the strangeness-changing weak decay Ξb−→Λb0π−\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb−1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay Ξb−→Λb0π−\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞb−fΛb0B(Ξb−→Λb0π−)=(5.7±1.8−0.9+0.8)×10−4{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞb−f_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the b→Ξb−b\to\Xi_b^- and b→Λb0b\to\Lambda_b^0 fragmentation fractions, and B(Ξb−→Λb0π−){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb−/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(Ξb−→Λb0π−){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm

    Identification of beauty and charm quark jets at LHCb

    Get PDF
    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select bb- and cc-quark jets is measured using data recorded by LHCb from proton-proton collisions at s=7\sqrt{s}=7 TeV in 2011 and at s=8\sqrt{s}=8 TeV in 2012. The efficiency for identifying a b(c)b(c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT>20p_{\rm T} > 20 GeV and pseudorapidity 2.2<η<4.22.2 < \eta < 4.2. The dependence of the performance on the pTp_{\rm T} and η\eta of the jet is also measured

    Search for Bâșc decays to the pp‟πâș final state

    Get PDF
    A search for the decays of the B + c meson to pp-π + is performed for the first time using a data sample corresponding to an integrated luminosity of 3.0 fb -1 collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV. No signal is found and an upper limit, at 95% confidence level, is set, fcfu×B(B + c →ppπ + ) < 3.6×10-8 in the kinematic region m(pp) < 2.85 GeV/c2, p T (B) < 20 GeV/c and 2.0 < y(B) < 4.5, where B is the branching fraction and f c (f u ) is the fragmentation fraction of the b quark into a B c + (B + ) meson
    • 

    corecore